Rapid enzymatic assays for L-citrulline and L-arginine based on the platform of pyrophosphate detection.

نویسندگان

  • Masafumi Kameya
  • Yasuhisa Asano
چکیده

Rapid determination of L-citrulline and L-arginine, physiologically important amino acids, is a beneficial technique from the scientific and medical viewpoints. In this study, enzymatic assays for L-citrulline and L-arginine were established and evaluated. L-Citrulline assay was constructed by coupling argininosuccinate synthetase to a pyrophosphate detection system, in which pyruvate phosphate dikinase was employed, so that the citrulline-dependent production of pyrophosphate could be determined. Furthermore, the L-arginine assay was developed by coupling arginine deiminase to the L-citrulline assay. Both assays exhibited high selectivity to L-citrulline and L-arginine without any significant reactivity to other proteinaceous amino acids. These assays were also resistant to various contaminants that interfered with the conventional L-citrulline and L-arginine assays. The high accuracy of these assays was demonstrated by measurements in the presence of human plasma. Because these assays can be conducted under the neutral pH without terminating the reaction progress, they allow not only measurements in static analyte solutions, but also real-time monitoring of L-citrulline and L-arginine synthesis in the reaction mixture. The features of these assays also demonstrated that the pyrophosphate detection system served as a useful platform to develop selective and robust enzymatic assays by being coupled to a pyrophosphate-producing enzyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergetic signal amplification of multi-walled carbon nanotubes-Cetyltrimethylammonium Bromide and Poly-L-Arginine as a highly sensitive detection platform for Rutin

In this research, a glassy carbon electrode was coated with a thin layer of multi-walled carbon nanotubes in the presence of the surfactant and subsequently was electro-polymerized with Poly-L-arginine (P-L-Arg). The prepared electrode was used as an effective sensor for the quantitative detection of Rutin (Ru). The fabricated electrode exhibited good electrochemical performance with low electr...

متن کامل

Synergetic signal amplification of multi-walled carbon nanotubes-Cetyltrimethylammonium Bromide and Poly-L-Arginine as a highly sensitive detection platform for Rutin

In this research, a glassy carbon electrode was coated with a thin layer of multi-walled carbon nanotubes in the presence of the surfactant and subsequently was electro-polymerized with Poly-L-arginine (P-L-Arg). The prepared electrode was used as an effective sensor for the quantitative detection of Rutin (Ru). The fabricated electrode exhibited good electrochemical performance with low electr...

متن کامل

اثر L - آرژینین بر انتقال عصبی - عضلانی عضله دوبطنی گردنی جوجه

Background and Purpose: NO is a short-lived gas molecule generated by degradation of L-arg to citrulline and by the activation of enzyme NOS Ca2+/calmodulin-dependent. There are multiple NOS isoforms that strongly are expressed in skeletal muscle, suggesting the crucial role of NO in regulating muscular metabolism and function. In this study, the effect of L-arginine was examined at the neuromu...

متن کامل

Rapid and selective enzymatic assay for L-methionine based on a pyrophosphate detection system.

An enzymatic assay for L-methionine was developed by coupling adenosylmethionine synthetase (AdoMetS) to a pyrophosphate (PP(i)) detection system, which was constructed using pyruvate, phosphate dikinase. To expand the use of this assay, the PP(i) detection system was embodied as three different forms, which allowed PP(i) to be measured by UV, visible, and fluorescent light detectors. The assay...

متن کامل

Multiple catalytic functions of brain nitric oxide synthase. Biochemical characterization, cofactor-requirement, and the role of N omega-hydroxy-L-arginine as an intermediate.

Brain NO (nitric oxide) synthase contains FAD, FMN, heme, and tetrahydrobiopterin as prosthetic groups and represents a multi-functional oxidoreductase catalyzing oxidation of L-arginine to NO and L-citrulline, formation of H2O2, and reduction of cytochrome c. We show that substrate analogues and inhibitors interacting with the heme block both the reductive activation of oxygen and the oxidatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Enzyme and microbial technology

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2014